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1. Compartmental and agent-based models are the two major mathematical frameworks to descri-
be epicemic models. The former one investigates the number of individuals (or proportion of
the population) according to their disease status by a set of ordinary, deterministic di�erential
equations. One of these models is the so-called SIS model. In these equations, S and I refer to
the number of susceptible and infectious individuals, respectively. The second S indicates that
repeat infections are possible. In contrast to the SIR models wherein individuals become later
immune or recovered (R).

Although the current pandemic situation (COVID-19) can hardly be examined with this model,
since we still do not know exactly whether a person can be re-infected, the qualitative dynamical
behaviour is encoded.
The SIS model reads as follows

dS

dt
= −βSI

N
+ γI,

dI

dt
=
βSI

N
− γI,

where the infectious rate, β, controls the rate of spread which represents the probability of
transmitting disease between a susceptible and an infectious individual. Recovery rate, γ, is
determined by the inverse of the average duration of infection. The total populationN = S+I is
constant. Investigate the epidemic evolution with respect to di�erent pairs of (β, γ). If the basic
reproduction number R = β/γ is larger than 1 initially, di�erent kinds of intervention should be
applied in order to reduce the number of infectious individuals. Such an option is, for example,
a smooth, monotonic decreasing, time-dependent transmission rate, β(t) (mimicing voluntary
or compulsory changes in population's defensive behavior, distancing, wearing a mask) with
time scale comparable to the average duration of infection or even 1�2 magnitude longer. The
intervention is e�ective when R ≈ 0.9 has been achieved. Show numerical evidences for various
scenarios.

(Tamás Kovács)

2. Climate change (along with other phenomena) has directed the scienti�c attention to physical
systems subjected to temporal parameter change. The damped, driven harmonic oscillator
is a paradigmatic example of physics in which the sinusoidal driving with �xed amplitude
correspond to annually periodic, stationary climate in the climate analogy, In the spirit of
this analogy, investigate the case when the driving amplitude changes (grows or decreases) in
time linearly, starting from some initial value. Just like the long-time behavior of the well-
known case is characterized by a sustained periodic motion (attractor), there also exists an
oscillatory motion to which all initial conditions converge in this case as well, whose amplitude
however now becomes time-dependent. Determine the parameters of this oscillatory dynamics
and display the motion. Is the tendecy for resonance inherited during the 'climate change'?

(Dániel Jánosi and Tamás Tél)
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3. Loránd Eötvös was designing in one of his early experiments a dynamic method to measure
the gravitational constant. He has placed two equal, square-based cuboid lead blocks such that
their opposite faces are parallel, and their distance is to be equal to the a = 30 cm long base
edges (see corresponding �gure). The height of the cuboids was h = 2a.

In between the lead blocks the torsional balance was �tted, such that the supporting rod is
precisely in the center between the bricks. The rod, with negligible thickness and weight, and
length 2l (evidently, l < a/2) held two balls of same mass at its end. The center of the rod was
�xed to a torsional wire, so rotational oscillations were possible in the horizontal plane. During
the experiment, he has measured the oscillation period at small rotation angles around the two
equilibrium positions of the torsion balance.
Let us denote the period of 'transversal' oscillation around the equilibrium state of the rod
perpendicular to the sides by Tt (see left panel of �gure), and the 'longitudunal' oscillation
period when the equilibrium con�guration is set to be parallel with the block faces by Tl (see
right panel of �gure). Note that historically the 'period' time was considered to be half of the
present meaning. According to the theoretical calculation, the gravitational constant f could
be determined in this measurement of Eötvös using the following expression:

1

T 2
l

− 1

T 2
t

=
13.427

π2
f% (1− ε),

where % is the density of the homogeneous lead blocks, and ε is a correction depending on the
geometry of the rod and taking into account the �nite size of the blocks. Let us show that the
numerical value in the formula does not depend on the size of the prisms, but only on the ratio
of the length of the edges h/a (which is �xed in this case), whereas it does depend on the arm
length of the balance.
It happens that one can not �nd any reference to the actual value of l in any of the publications
by Eötvös. So the question arises: at which value of l do we get the speci�c numerical value
13.427? How does this number in the formula depend on l in the interval 0 < l < a/2?

Remark: Loránd Eötvös was planning to make the measurement more precise, so that the
experiment would be performed �instead of using the unreliable lead bars, with the truly ho-
mogeneous mercury� in vacuum. This measurement however have never taken place.

(József Cserti)

4. Consider the following system: Bodies of di�erent mass are in rest initially. A body with mass
M is vertically thrown with velocity V1 by a machine. When the body falls back to its initial
height with velocity V ′1 , the machine gives all of its kinetic energy to another body with mass
M/
√

1.1, throwing it up vertically as well. The process repeats, the energy is always given to
a body with mass of

√
1.1 times smaller than the mass of the previous body.

The drag force is proportional with the square of the velocity, and the initial velocity V1 happens
to be the terminal velocity V∞ associated with the �rst body and the quadratic drag-force.

Express the �nal velocity V ′101 of the body indexed as N = 101.

(Ákos Gombköt®)
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5. We have measured the temperature in a room, presented in the attached table (see here), while
heating at a steady maximum rate (power), and while not heating at all (after turning the
heating o�). In the heating case, the outside temperature was a constant 7.4 ◦C, while in the
cooling case it was a constant 2.8 ◦C. The room has 50 % of its walls (and �oors and ceilings)
bordering the neighboring apartments, in where the temperature is kept constant. The other
50 % of walls are outside walls. Questions:

1) Explain qualitatively the shape of the two curves as a function of time!

2) Fit appropriate functions to the curves! What is the interpretation of the �t parameters?

3) What is the temperature in the apartment of the neighbours?

4) During the heating curve, the heating power was constant, and the cost of the heating in
this period was 1 EUR. Normally, at the same outside temperature, this room is kept at a
constant inside temperature of 20 ◦C. How much does the heating cost per month?

5) What is the maximum temperature that can be sustained in this room, if we keep the heating
power (the same what we used when measuring the temperature curve) turned on all the time,
if the outside temperature is 0 ◦C?

6) At 2.8 ◦C outside temperature we are heating the room every day for x hours, and let it
cool for 24− x hours, where 0 < x < 24. When the heating is on, we use a regular thermostat
which turns on and o� at 20 ◦C. What will be our monthly heating cost as a function of x,
relative to the cost for the x = 24 case? Make a plot!

7) Assume that the outside temperature changes sinusoidally with a period of one day as a
function of time. Then the inside temperature will also change sinusoidally as a function of
time, but with smaller amplidute and with a delay (phase), without heating. How much is the
amplitude reduction factor and how much is the delay?

(Gábor Veres)

6. Recently many mopping buckets contain an attached top structure to squeeze water out of the
cloth:

The mass distribution of the bucket is then asymmetric: hanging the empty bucket, the angle
between the top edge and the horizontal plane is α0. Let us model the bucket with a cuboid
with sides 30 × 25 × 25 cm, mass of m = 750 g, with its center of mass is at a distance of
s = 15 cm from the top horizontal edge, in a direction which is at α0 = 0.16 radian relative to
the vertical:

What is the inclination angle α of the bucket relative to horizontal, if the water level is h,
measured along the higher near-vertical edge? At which water level h will the bucket approach
a near horizontal attitude, to a precision of 0.01 radian? Wherever useful, let us assume that
α is small!

(Tamás Tél)
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7. The solution of the Newton equation, mẍ = F (t) (where F (t) depends only on time t) can be
expressed with an integral operator as,

x(t) =

∫ ∞
−∞

G(t− t′)F (t′) dt′.

What is the kernel G(t− t′) of the integral operator?
(Géza Tichy)

8. Two spherical celestial bodies, of masses m1 and m2 and moments of inertia Θ1 and Θ2, are
orbiting around their common center of mass on a circular trajectory. Their distance is R, which
is much larger than the size of the objects. The rotation axis of both bodies is perpendicular to
the orbital plane, the angular velocities are ω1 and ω2 respectively, both larger than the orbital
angular velocity Ω.
Very long time passes, and the two objects become tidally locked, that is, they turn permanently
the same side towards each other.
Which fraction of the original mechanical energy of the system has been dissipated as heat due
to the tidal heating during the process, until complete locking? Give a �rst order approximation.
We can assume that the system is isolated from the rest of the world, with no exchange of energy
or angular momentum. The bodies are orbiting around each all along on a circular trajectory.

(Gyula Dávid)

9. Let us study in detail the process leading to tidal locking. Assume a planet orbited by a single
moon on a circular trajectory of radius R. The rotational axis of the moon is perpendicular to
the orbital plane, the initial angular velocity ω is much larger than the orbital angular velocity
Ω. The mass of the planet M is much larger than the mass of the moon m. Let us also assume
that the shape change of the planet due to the gravitational e�ects from the moon is irrelevant.
In contrast, the moon is distorted to a tri-axial ellipsoid due to tidal forces, keeping its volume
constant. Let us consider that the mass distribution of the moon is homogeneous.
The tidal wave on the moon is not pointing precisely in the direction of the planet causing
the tidal forces, but features a small angle delay. Instead of taking complicated details of
elastic deformation into account, let us make a simple approximation: the tidal wave follows
the gravitational e�ect with a constant time delay τ . This time constant τ is much shorter
than the rotational period of the moon. Correspondingly, let us assume that the amplitude of
the tidal deformation wave is proportional to the tidal force acting on the moon (whic scales
as 1/R3).

a) Derive the di�erential equation governing the change of the moon's rotational angular velo-
city, assuming that the distance from the planet and the orbital period is constant. Solve this
equation.

b) Now let us take into account the e�ect that due to the torque excerted on the tidal wave,
the orbital period and the orbit radius of the moon change. Write down the coupled di�erential
equations for the rotational ω and orbital Ω angular velocities! Eliminating Ω and introducing
well suited parameters, derive the resulting equation for ω only (which does not need to be
solved). Let us study under which conditions can we get back the equation in part a).

c) Describe the more general problem. Let the two masses be comparable. Let both the planet
and the moon be deformable, but the formation time constants (delays) should be set di�erent
τ1 and τ2. The amplitudes of the tidal waves is proportional to the attractive tidal force between
the bodies, but the coe�cients of this proportionality are di�erent. Assume that the rotational
axes of the moon and planet are parallel, and both perpendicular to the orbital plane. The
initial rotational angular velocities are ω1 and ω2 respectively, both larger than Ω. Write down
the coupled equations for the change rate of ω1(t), ω2(t) and Ω(t) (which, again, does not need
to be solved).

(Attila Gohér and Gyula Dávid)
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10. Sorry, the Problem 10 has been withdrawn (26th Oct 19:52 CET)

11. The thunder after the lightning starts with a strong clap and the clap is later followed by a
long, deep murmur. Explain the e�ect using the properties of the sound propagation!

(Géza Tichy)

12. Consider the core of the Earth as a homogeneous spherical rigid body of radius R and density
ρm, which is surrounded by �uid of density ρ. We can assume that the equilibrium point for
the core is when its center of mass is at the geometrical center of Earth. Derive the equation
of motion of the core for small oscillations.

(Ákos Gombköt®)

13. Two identical point-like magnetic bars are placed on a table with magnetic dipoles aligned on
the plane of the table and a) in the opposite direction to each other and perpendicular to their
separation direction, and b) in the same direction and parallel to their separation direction.
One of the bars is �xed and the other one can move without friction on the table.
The orientation of the magnetic dipoles does not change during the motion. Calculate the time
the moving magnet does take to hit the �xed magnet owing to the attractive force between
the two magnetic bars. Assume that the interaction between the two bars can be modeled by
magnetic dipole-dipole interaction.

(József Cserti)

14. Two homogeneous, spherical conducting particle, of identical radius and material (unobtainium)
collide head-on. The relative velocity is great enough, that the Q charge, distributed evenly on
the surface of body 1. does not induce noticable charge-distribution on the electrically neutral
body 2. Due to a special property of unobtainium, there is no discharge between the two
bodies, currents are only present during mechanical contact. In the process of collision, the
elastic deformation takes place on a negligible timescale, during most of the contact both body
deforms into a hemisphere and form a single spherical conducting body together. The process
of charge-relaxation progresses for T time. After t = T the mechanical contact ceases, and the
charge distribution along the plane that separates the two hemispheres will be shared equally
between the two bodies.
At t = 0, half of charge Q will be distributed evenly at the outer surface of body 1. After
collision, the charges on the bodies are distributed with ratio 3:2 between the spheres. Our
only question is the duration of the collision.

(Ákos Gombköt®)
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15. On a January morning, a university student prepares for his thermodynamics exam on the
following day. He has been wondering recently that entropy has the same unit as heat capacity,
but during preparing his tea, he does not feel like thinking about it too deep. However, as
he mixes a cold, 16 ◦C tea with the same amount of warm, 88 ◦C tea, the following question
emerges: how much fraction of the total heat capacity of the tea appears as entropy increase
during mixing? Let us help him! Assume that the speci�c heat of tea does not depend on
temperature.

(Gyula Radnai)

16. The slits of an optical grating are not exactly equally wide due to manufacturing reasons. While
the distance between the center of two neighboring slits is constant (the grating constant d),
the width of the slits �uctuates randomly. The width of the slits is a Gaussian random variable
of expectation value a and standard deviation σa.

a) Find the di�raction pattern of the grating if a laser beam of wavelength λ falls at normal
incidence on it, and the number of slits illuminated is N .

b) How would the di�raction pattern change, if the width of the slits a was constant, but the
distance between the neighboring slits was a Gaussian random variable of expectation value d
and standard deviation σd?

(Máté Vigh)

17. A monochromatic parallel light beam is directed to a high resolution transmission optical
di�raction grating with vertical grooves. Then, we rotate the grid around the center vertical
grating as axis with the same angle as the n-th de�ection order in the original setting. Which
are the di�raction directions from the grating in this case?

a) In what directions do the light beams emerge in this case?

c) De�ne the relation between wavelength, grating period, and rotation angle, when only the
0-th (non-di�racted) order and one of the �rst order (left or right) is transmitted!

d) Determine the ratio of the maximum and minimum wavelength, for which the above condi-
tion can be ful�lled for a given rotation angle.

(Gyula Radnai and Dezs® Varga)

18. The equation of motion of a relativistic point particle moving in an external �eld is d(Muk)/dτ =
Fk, where τ is the proper time, uk is the vector of four-velocity, M is the rest mass of the
particle, and Fk is the four-force of the external �eld. Study the motion of the particle in the
static central symmetric �eld of a �xed center. Calculate the orbital 3-velocity of the particle,
and the revolution time (expressed by reference time t and by proper time τ) as functions of
the radius r of the particle orbit. Investigate

a) the case of the Higgs �eld where the attractive force of the center is Fk = g ∂kΦ(r) with
coupling constant g, and

b) the case of Nordström gravity theory, where the 'coupling constant' is the rest mass M (as
it is ordinary in gravity theories): Fk = M ∂kΦ(r). In both cases the �eld Φ(r) is a four-scalar
�eld with power-like dependence on radius r: Φ(r) = −K/rN with positive constants K and
N .
c) Recent theories of particle physics assume that the rest mass of some elementary particles
is due only to the Higgs �eld Φ. What is the orbital speed of such particles as a function of the
radius R?

(Gyula Dávid)
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19. A one-dimensional quantum particle of mass m, in a linear potential Fx, is enclosed into a
box of length L, with hard walls (equivalent to a quantum ball vertically bouncing between
the the �oor and the ceiling). Starting from the stationary Schrödinger equation, taking into
account the boundary conditions, write out the equation determining the energy eigenvalues
and solve it numerically. Plot the lower levels as functions of the size of the box, and illustrate
the stationary wave functions. Given the asymptotes of the of the functions in the expression for
the energy eigenvalues, give the simpler equation for the higher levels. Perform also semiclassical
quantization, then compare it to the aforementioned approximate formula and, numerically, to
some levels of from the exact equation.

Further questions: a) Give the levels explicitly for small L.

b) By what parameters will the ground state energy equal FL? (This is the case when the
classical ball just reaches the ceiling.)

c) Show that, in the case L is smaller than the threshold value in (b) then all levels are higher
than FL.
d) Write out the semiclassical wave functions explicitly and compare them graphically to some
exact ones � when do we get a good agreement?

e) Write out the wave functions for small L. These, too, should be visually compared to the
exact ones.

(József Cserti and Géza Györgyi)

20. A harmonic oscillator is in the Kth energy eigenstate. Then the system is abruptly changed:
the frequency of the oscillator is multiplied by factor e2γ, where γ is an arbitrary real number.
Express the state vector at the moment of the break and by time t after the break using only
the emission operator and ground state vector of the new system. Give the answer as well if
the initial state of the system is not an energy eigenstate but a coherent state characterized by
an arbitrary complex number β.

To know the probability to �nd the system in the nth energy eigenstate of the new Hamiltonian
you have to calculate in�nitely much matrix elements. Construct a generating function with two
variables which gives you these matrix elements by simple derivation. Calculate this probability
in the special case n = K.

Study the limiting case when the parameter γ tends to zero.

(Gyula Dávid)

21. The electron speci�c heat of a metal is calculated in every textbook at constant number of
electrons, i.e., when the sample is isolated. In this calculation the Sommerfeld expansion is
applied. Using the same method, �nd the electron speci�c heat at constant Fermi energy, i.e.,
when the sample is grounded.

(Géza Tichy)

22. In the process of adiabatic demagnetization, paramagnetic salt is used. After the application of
magnetic �eld, vacuum is applied to sure the adiabatic conditions and the �eld is switched o�.
The salt cools dawn from kelvin to about millikelvin. Let the paramagnetic salt modeled by
independent magnetic dipoles of spin-1

2
. What is the temperature vs. magnetic �eld function

during the adiabatic cooling? What can we say in case of paramagnetic salt with higher spin?

(Géza Tichy)
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23. Tight-binding models on lattices consist of hopping terms on a lattice. Suppose that a lattice
extends on the xy-plane, and a homogeneous magnetic �eld of strength B0 is pointing in the
z-direction. In this case a general hopping operator can be written as

T̂m,n = −
∑
µ,ν

Jm,n exp(iθ(m,n)µ,ν )ĉ†µ+m,ν+nĉµ,ν ,

where Jm,n denote hopping parameters, ĉ†µ,ν(ĉµ,ν) denote the creation(annihilation) operators
for a particle at lattice site indexed by µ, ν.

A typical model is situated on some type of lattice (square, triangular, etc.), and the Hamil-
tonian is a sum of terms T̂m,n for di�erent m,n and their Hermitian conjugates (for example,
m = 0, n = 1 is hopping between nearest neighbors in the y-direction, etc.). The phase θm,nµ,ν

denotes the line integral of the vector potential starting from the lattice site indexed by µ, ν
to the one by µ+m, ν + n,

θ(m,n)µ,ν =

∫ ~Rµ,ν+~Rm,n

~Rµ,ν

~A · d~r,

along a straight line.

We de�ne the lattice derivative of function f(µ, ν):

∆m,nf(µ, ν) = f(µ+m, ν + n)− f(µ, ν).

• Under what condition do two hopping operators, T̂m,n and T̂p,q commute?

Let us also de�ne magnetic translation operators of the type

T̂m,n =
∑
µ,ν

exp(iχ(m,n)
µ,ν )ĉ†µ+m,ν+nĉµ,ν .

In the following, consider the square lattice, with nearest neighbor hoppings of strength J in
both x and y directions (in other words, only J10 and J01 are �nite).

• Derive the conditions under which the magnetic translation operators commute with the
full Hamiltonian of the simple square lattice. (In other words, derive the discrete di�eren-
tial equations between χ(m,n)

µ,ν and θ(m,n)µ,ν .)

• Find the solutions of these equations.

• Check if the magnetic translation operators form a group, and if not, modify them so that
they do.

• Assuming a �nite system with periodic boundary conditions (Lx, Ly), construct the �nite
magnetic translation group.

(Balázs Hetényi)

24. The expansion of the Universe is described by the scale function a(t). A free particle passes the
origin of our co-moving reference system by velocity v0 at the moment t0. What is the velocity
of the particle in a later moment t?

(Gyula Dávid)
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25. Renormalizability of quantum �eld theories is inherently connected with the symmetry of the
system in question. Renormalizability based on naive power counting is usually not su�cient,
the counterterm functional needs to inherit the symmetry of the system, otherwise there might
appear divergences that cannot be cancelled via counterterms of the Lagrangian. In case of
symmetries that are linear in terms of the �eld variables, one can easily show that the symmetry
of the Lagrangian is inherited by the quantum e�ective action, thus the counterterm structure
is consistent with that of the Lagrangian.

Let us consider a φ = (σ, πa) (a = 1, 2, 3) four component �eld variable, which is coupled
to a massless fermion doublet through Yukawa interaction. The interaction is described by
Lint = gψ̄(σ + iπaγ5τ

a)ψ in the Lagrangian (kinetic terms are the usual ones), where ψ̄ is
the Dirac adjoint of ψ, τa refers to the Pauli matrices, and γ5 is the �fth Dirac matrix. It
can be shown that the system exhibits O(4) symmetry, which are linearly realized in terms of
the �elds, thus the structure of the counterterm functional has to be the same as that of the
Yukawa term. Let us calculate the δg counterterm at the lowest order of perturbation theory,
i.e. calculate the following Feynman diagram (solid oriented lines refer to fermions, while dashed
ones correspond to φ).

If the dashed external line is σ, then starting from the bottom fermion propagator the contri-
bution of the diagram schematically reads

iδg =

∫
p

S(p)× ig × S(p)
[
(ig)2 + (ig × iγ5τ b)2

]
G(p),

while if the former is πa, then

iδg × iγ5τa =

∫
p

S(p)× ig × iγ5τa × S(p)
[
(ig)2 + (ig × iγ5τ b)2

]
G(p),

where S is the fermion, and G is the φ propagator. Since {γµ, γ5} = 0 (and thus {S, γ5} = 0),
there is a sign di�erence in δg between the two calculations. That is to say, in the counterterm
functional the operator ∼ ψ̄(σ− iπaγ5τa)ψ appears, which violates the former O(4) symmetry
and is not compatible with the Lagrangian. Where do we make errors when considering the in-
tegrals regarding the diagrams? In case of spontaneous symmetry breaking, what other diagram
o�ers the possibility to calculate δg?

(Gergely Fej®s and Zsolt Szép)

26. Let's assume that the depth of Lake Balaton was mapped at every point of its water surface
and it's described by the function D(x, y), where (x, y) is a point within the contour of the lake
shore. If D(x, y) is known accurately, can the following information be derived from D(x, y)?

a) What is the most frequently occurring depth, i.e., the mode of depth distribution? b) How
can the average depth be de�ned and formulated? c) How can the density function of depth
distribution f(z) be derived from D(x, y) (here f(z)dz is the probability that the value of the
depth z in a random measurement falls in the interval [z, z+ dz])? Can it be derived at all? d)
What is the median depth separating the upper half of the lake volume from the bottom one?
e) Where is the lake's center of gravity, if the water density depends on the depth z as %(z)? f)
What is the median depth separating the upper half of the lake weight from the bottom one?
g) How can the 'expected value' of depth < z >=

∫
zf(z)dz be formulated?

We naturally assume that the lake has a convex underwater ground surface. What if the lake
is concave?
If the above questions cannot be handled analytically, what would be the answers for these two
special cases: α) The lake has a half sphere shape with the �at surface at the top (bowl)? β)
The lake has a half sphere shape with the �at surface at the bottom (bell)?

(Oszvald Glöckler)
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27. Inhabitants of the �ctious FlatEarth need no belief: they know that they live on a plane
surface. They can actually see the edges. The surface is covered with ice, and in the clear air
the Perimeter of the huge �atland is apparent to the naked eye. The Perimeter is a uniform
square, and the inhabitants live around the center of the Square, to which a mysterious force
pulls them back all the time. Philosophers are arguing since ancient times about the precise
shape of the planet. No question of course, that FlatEarth (according to the ancient legend)
was created by the Flying Spagetti Monster as icecube for his soft drink, but somehow slipped
out of his hand and now wanders in space; the question is the precise shape of the icecube.
It is agreed that the shape is a square based prism; but how thick? Cubists state that it is
actually a regular cube (what else an icecube could be?). According to sheetists, the thickness
of the prism is negligibly small relative to the side of the square, as a single plane is su�cient
to be popoulated by FlatEarthians. A number of expeditions have been launched to answer the
question: the idea was to get to the Perimeter, and after climbing over, they simply measure
the side perpendicular to their life plain. Unfortunately, the slippery ice shattered all plans, as
the friction is practically negligible. The researchers slided back all the time, as approaching
the Perimeter felt like a continuously steepening slope.

The unsuccessful expeditions were returning to CenterCity, where they met the Braves. These
citizens have no fear of the ice �elds around the city; they move away from the middlepoint as
far as possible, and then pushing themselves perpendicularly, they orbit around CenterCity on
skate for a long time. An old sportsmans's experience is that the orbital period is independent
from how far one is distancing from the city.

When scientists, after many disappointments, realized that they will never be able to decide on
this ancient question on the plane shape by expeditions to the Perimeter, looked for di�erent
methods. Applications were invited to determine the shape using local measurements, to be
performed around CenterCity.

The best project was completed by a physicist group using the acronym 'Idunno'. They bought
pendulums, watches, glass cylinders, spades, pickers and levers from the funding. They hung a
pendulum on a high pole erected in the center of the city, and other group members measured
the orbiting time of the Braves skating around the city. Actually they also started to hack the
ice, and found out to their surprise that the whole planet is � except for a thin ice layer � is
made of this strange material that they call 'rock'. They could actually measure the density of
'rock'.
Soon after, the research group announced that they received messages from the inhabitants of
a distant celestial body, the latter they call 'SphericalEarth', and they shared the measurement
results with this foreign civilization. Soon it turned out that lot of similarities exist between the
two planets. The period time of a pendulum in CentralCity is the same as on the north pole of
SphericalEarth for the same pendulum length. The Braves, orbiting around CentralCity, take
the same time for one turn as the 'equatorial satellite' orbits around SphericalEarth. Finally,
it turned out that the 'rock' on FlatEarth had the same density as the average density of
SphericalEarth.

Based on these informations, the researchers could easily determine the precise dimensions
of FlatEarth, including the thickness of the prism, thus concluding the ancient philosophical
argument. Unfortunately there was considerable political turmoil after the publication of the
results, so the �ndings were not broadcasted to those living on SphericalEarth (us).

This means that the task to determine the sizes of FlatEarth is left to You, participants of
the 2020 Ortvay Competion. The call is to determine the length of the side of the Square, and
the thickness of the planet, expressed as multiple of the radius of SphericalEarth. Give exact
value. You may afterwards calculate the result numercially as well. Be more fortunate than the
unfortunate Perimeter explorers, and more brave than the Braves!

(József Cserti and Gyula Dávid)
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28. In the beginning of the 1970s, when the predecessor of the Ortvay Competition was established
by Géza Tichy and János Major, referred to as Physics Students Problem Solving Competition,
there was no internet, and not even simple possibility of using copy machine. To this end, the
problems were posted on the announcement dashboard, and those standing in front could take
notes in handwriting. (Later technological improvements enabled mimeography of typewriter
text and handwritten formulas).

In the autumn of 1970, just few days before the starting of the very �rst (then not yet called
Ortvay) competition there were 36 physicst students (back then, the classes were just that
large) crowding in front of the freshly announced problem in the subject of 'Vector calculus',
starting in that year. The problem to be noted and solved (with Gaussian elimination) was
an inhomogeneous system of six linear equations with six unknown variables. The system
of equations was special, with all coe�cients and all constant terms being integers of one
digit, with either positive or negative sign, but zero was not among these. The teacher of the
subject wished to simplify the problem to allow more students to compete, therefore the original
problem was inconsistent: it could have been easily proven by Gaussian elimination that no
solution exists.
However, overcrowded corridors do not favour precise information transfer... while attempting
to copy the system of equations, every single student made a mistake, such that each one
of them wrongly noted exactly one sign of a coe�cient (miraculously, all of a di�erent one).
Fortunately the constant terms on the right side of the equations were all copied correctly.
As a result, an intentionally simple problem instead led to long and complicated calculations,
causing a lot of upset feelings (it would have been more interesting to deal with the competition
problems).

The teacher was shocked to see the multiple pages of nasty calculations. He only got a bit reli-
eved when one of the solutions led to the consequence that the equation system is inconsistent
(in spite of the fact, as we know, that also this student had one sign incorrect).

Our question is this: what is the probability, that there is one student among the 36, which
gets to this conclusion, despite the sign error?

Certainly one can assume, that physics students (though not strong at copying) never make
errors during the actual calculation, neither principal, nor numerical. ('cause physicist's the
BEST, the BEST, the BEST!' � as The Physicists' March sounds).

(Gyula Dávid)

\end{document}
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